翻訳と辞書 |
Generalizability theory : ウィキペディア英語版 | Generalizability theory
Generalizability theory, or G Theory, is a statistical framework for conceptualizing, investigating, and designing reliable observations. It is used to determine the reliability (i.e., reproducibility) of measurements under specific conditions. It is particularly useful for assessing the reliability of performance assessments. It was originally introduced in Cronbach, L.J., Nageswari, R., & Gleser, G.C. (1963). ==Overview== In G theory, sources of variation are referred to as ''facets''. Facets are similar to the “factors” used in analysis of variance, and may include persons, raters, items/forms, time, and settings among other possibilities. These facets are potential sources of error and the purpose of generalizability theory is to quantify the amount of error caused by each facet and interaction of facets. The usefulness of data gained from a G study is crucially dependent on the design of the study. Therefore, the researcher must carefully consider the ways in which he/she hopes to generalize any specific results. Is it important to generalize from one setting to a larger number of settings? From one rater to a larger number of raters? From one set of items to a larger set of items? The answers to these questions will vary from one researcher to the next, and will drive the design of a G study in different ways. In addition to deciding which facets the researcher generally wishes to examine, it is necessary to determine which facet will serve as the object of measurement (e.g. the systematic source of variance) for the purpose of analysis. The remaining facets of interest are then considered to be sources of measurement error. In most cases, the object of measurement will be the person to whom a number/score is assigned. In other cases it may be a group or performers such as a team or classroom. Ideally, nearly all of the measured variance will be attributed to the object of measurement (e.g. individual differences), with only a negligible amount of variance attributed to the remaining facets (e.g., rater, time, setting). The results from a G study can also be used to inform a decision, or D, study. In a D study, we can ask the hypothetical question of “what would happen if different aspects of this study were altered?” For example, a soft drink company might be interested in assessing the quality of a new product through use of a consumer rating scale. By employing a D study, it would be possible to estimate how the consistency of quality ratings would change if consumers were asked 10 questions instead of 2, or if 1,000 consumers rated the soft drink instead of 100. By employing simulated D studies, it is therefore possible to examine how the generalizability coefficients (similar to reliability coefficients in Classical test theory) would change under different circumstances, and consequently determine the ideal conditions under which our measurements would be the most reliable.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Generalizability theory」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|